Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Behav Brain Res ; 465: 114943, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452974

RESUMEN

The normal aging process is accompanied by cognitive decline, and previous studies have indicated the crucial role of the hypothalamus in regulating both aging and cognition. However, the precise molecular mechanism underlying this relationship remains unclear. Therefore, this present study aimed to identify potential predictors of cognitive decline associated with aging specifically within the hypothalamus. To achieve this, we employed Morris water maze (MWM) testing to assess learning and memory differences between young and aged mice. Additionally, transcriptome sequencing was conducted on the hypothalamus of young and aged mice to identify potential genes. Subsequently, GO and KEGG analyses were performed to investigate the functions of differentially expressed genes (DEGs) and their associated biological pathways. Finally, the results obtained from sequencing analysis were further validated using qRT-PCR. Notably, MWM testing revealed a significant decrease in spatial learning and memory ability among aged mice. According to KEGG analysis, the DEGs primarily encompassed various biochemical signaling pathways related to immune system (e.g., C3; C4b; Ccl2; Ccl7; Cebpb; Clec7a; Col3a1; Cxcl10; Cxcl2; Fosb; Fosl1; Gbp5; H2-Ab1; Hspa1a; Hspa1b; Icam1; Il1b; Itga5; Itgax; Lilrb4a; Plaur; Ptprc; Serpine1; Tnfrsf10b; Tnfsf10), neurodegenerative disease (e.g., Atp2a1; Creb5; Fzd10; Hspa1a; Hspa1b; Il1b; Kcnj10; Nxf3; Slc6a3; Tubb6; Uba1y; Wnt9b), nervous system function (e.g., Chrna4; Chrna6; Creb5; Slc6a3),and aging (e.g., Creb5; Hspa1a; Hspa1b) among others. These identified genes may serve as potential predictors for cognitive function in elderly individuals and will provide a crucial foundation for further exploration into the underlying molecular mechanisms.


Asunto(s)
Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Anciano , Perfilación de la Expresión Génica , Envejecimiento/genética , Disfunción Cognitiva/genética , Hipotálamo , Transcriptoma
2.
Geroscience ; 46(2): 2583-2604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38103096

RESUMEN

DNA methylation (DNAm) clocks hold promise for measuring biological age, useful for guiding clinical interventions and forensic identification. This study compared the commonly used DNAm clocks, using DNA methylation and SNP data generated from nearly 1000 human blood or buccal swab samples. We evaluated different preprocessing methods for age estimation, investigated the association of epigenetic age acceleration (EAA) with various lifestyle and sociodemographic factors, and undertook a series of novel genome-wide association analyses for different EAA measures to find associated genetic variants. Our results highlighted the Skin&Blood clock with ssNoob normalization as the most accurate predictor of chronological age. We provided novel evidence for an association between the practice of yoga and a reduction in the pace of aging (DunedinPACE). Increased sleep and physical activity were associated with lower mortality risk score (MRS) in our dataset. University degree, vegetable consumption, and coffee intake were associated with reduced levels of epigenetic aging, whereas smoking, higher BMI, meat consumption, and manual occupation correlated well with faster epigenetic aging, with FitAge, GrimAge, and DunedinPACE clocks showing the most robust associations. In addition, we found a novel association signal for SOCS2 rs73218878 (p = 2.87 × 10-8) and accelerated GrimAge. Our study emphasizes the importance of an optimized DNAm analysis workflow for accurate estimation of epigenetic age, which may influence downstream analyses. The results support the influence of genetic background on EAA. The associated SOCS2 is a member of the suppressor of cytokine signaling family known for its role in human longevity. The reported association between various risk factors and EAA has practical implications for the development of health programs to improve quality of life and reduce premature mortality associated with age-related diseases.


Asunto(s)
Yoga , Humanos , Café , Estudio de Asociación del Genoma Completo , Calidad de Vida , Envejecimiento/genética , Sueño/genética , Carne , Epigénesis Genética , Proteínas Supresoras de la Señalización de Citocinas
3.
PLoS One ; 18(11): e0291943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943864

RESUMEN

Aging leads to time-dependent functional decline of all major organs. In particular, the aging brain is prone to cognitive decline and several neurodegenerative diseases. Various studies have attempted to understand the aging process and underlying molecular mechanisms by monitoring changes in gene expression in the aging mouse brain using high-throughput sequencing techniques. However, the effect of microRNA (miRNA) on the post-transcriptional regulation of gene expression has not yet been comprehensively investigated. In this study, we performed global analysis of mRNA and miRNA expression simultaneously in the hypothalamus and hippocampus of young and aged mice. We identified aging-dependent differentially expressed genes, most of which were specific either to the hypothalamus or hippocampus. However, genes related to immune response-related pathways were enriched in upregulated differentially expressed genes, whereas genes related to metabolism-related pathways were enriched in downregulated differentially expressed genes in both regions of the aging brain. Furthermore, we identified many differentially expressed miRNAs, including three that were upregulated and three that were downregulated in both the hypothalamus and hippocampus. The two downregulated miRNAs, miR-322-3p, miR-542-3p, and the upregulated protein-encoding coding gene C4b form a regulatory network involved in complement and coagulation cascade pathways in the hypothalamus and hippocampus of the aging brain. These results advance our understanding of the miRNA-mediated gene regulatory network and its influence on signaling pathways in the hypothalamus and hippocampus of the aging mouse brain.


Asunto(s)
MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Envejecimiento/genética , Hipocampo/metabolismo , Hipotálamo/metabolismo
4.
Nutrients ; 15(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299424

RESUMEN

With advancing age, women experience irreversible deterioration in the quality of their oocytes, resulting in reduced fertility. To gain a deeper understanding of the influence of ferroptosis-related genes on ovarian aging, we employed a comprehensive approach encompassing spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsy. This investigation revealed the intricate interactions between ferroptosis and cellular energy metabolism in aging germ cells, shedding light on the underlying mechanisms. Our study involved 75 patients with ovarian senescence insufficiency, and we utilized multi-histological predictions of ferroptosis-related genes. Following a two-month supplementation period with DHEA, Ubiquinol CoQ10, and Cleo-20 T3, we examined the changes in hub genes. Our results showed that TFRC, NCOA4, and SLC3A2 were significantly reduced and GPX4 was increased in the supplement group, confirming our prediction based on multi-omic analysis. Our hypothesis is that supplementation would enhance the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), resulting in increased levels of the antioxidant enzyme GPX4, reduced lipid peroxide accumulation, and reduced ferroptosis. Overall, our results suggest that supplementation interventions have a notable positive impact on in vitro fertilization (IVF) outcomes in aging cells by improving metal ion and energy metabolism, thereby enhancing oocyte quality in older women.


Asunto(s)
Ferroptosis , Humanos , Femenino , Anciano , Ferroptosis/genética , Ovario , Envejecimiento/genética , Oocitos/metabolismo , Senescencia Celular
5.
Nat Aging ; 3(7): 813-828, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37277640

RESUMEN

Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice. Depletion of Altre reduced Treg mitochondrial integrity and respiratory capacity, and induced reactive oxygen species accumulation, thus increasing intrahepatic Treg apoptosis in aged mice. Moreover, lipidomic analysis identified a specific lipid species driving Treg aging and apoptosis in the aging liver microenvironment. Mechanistically, Altre interacts with Yin Yang 1 to orchestrate its occupation on chromatin, thereby regulating the expression of a group of mitochondrial genes, and maintaining optimal mitochondrial function and Treg fitness in the liver of aged mice. In conclusion, the Treg-specific nuclear long noncoding RNA Altre maintains the immune-metabolic homeostasis of the aged liver through Yin Yang 1-regulated optimal mitochondrial function and the Treg-sustained liver immune microenvironment. Thus, Altre is a potential therapeutic target for the treatment of liver diseases affecting older adults.


Asunto(s)
Hepatopatías , ARN Largo no Codificante , Animales , Ratones , Envejecimiento/genética , Homeostasis/genética , Hepatopatías/metabolismo , ARN Largo no Codificante/genética , Linfocitos T Reguladores
6.
Environ Int ; 178: 108064, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364305

RESUMEN

INTRODUCTION: Native American communities suffer disproportionately from elevated metal exposures and increased risk for cardiovascular diseases and diabetes. DNA methylation is a sensitive biomarker of aging-related processes and novel epigenetic-based "clocks" can be used to estimate accelerated biological aging that may underlie increased risk. Metals alter DNA methylation, yet little is known about their individual and combined impact on epigenetic age acceleration. Our objective was to investigate the associations of metals on several DNA methylation-based aging measures in the Strong Heart Study (SHS) cohort. METHODS: Blood DNA methylation data from 2,301 SHS participants was used to calculate age acceleration of epigenetic clocks (PhenoAge, GrimAge, DunedinPACE, Hannum, Horvath). Urinary metals [arsenic (As), cadmium (Cd), tungsten (W), zinc (Zn), selenium (Se), molybdenum (Mo)] were creatinine-adjusted and categorized into quartiles. We examined associations of individual metals through linear regression models and used Bayesian Kernel Machine Regression (BKMR) for the impact of the total metal mixture on epigenetic age acceleration. RESULTS: The mixture of nonessential metals (W, As, Cd) was associated with greater GrimAge acceleration and DunedinPACE, while the essential metal mixture (Se, Zn, Mo) was associated with lower epigenetic age acceleration. Cd was associated with increased epigenetic age acceleration across all clocks and BKMR analysis suggested nonlinear associations between Se and DunedinPACE, GrimAge, and PhenoAge acceleration. No interactions between individual metals were observed. The associations between Cd, Zn, and epigenetic age acceleration were greater in never smokers in comparison to current/former smokers. CONCLUSION: Nonessential metals were positively associated with greater epigenetic age acceleration, with strongest associations observed between Cd and DunedinPACE and GrimAge acceleration. In contrast, essential metals were associated with lower epigenetic aging. Examining the influence of metal mixtures on epigenetic age acceleration can provide insight into metals and aging-related diseases.


Asunto(s)
Envejecimiento , Metilación de ADN , Metales , Humanos , Envejecimiento/genética , Indio Americano o Nativo de Alaska , Arsénico , Teorema de Bayes , Cadmio , Epigénesis Genética , Metales/toxicidad , Selenio , Zinc
7.
Zhen Ci Yan Jiu ; 48(6): 571-7, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37385788

RESUMEN

OBJECTIVE: To observe the effect of moxibustion at "Zusanli"(ST36) on the silent information regulator 1 (SIRT1) /p53 signaling pathway in subacute aging model rats, so as to reveal its mechanisms in delaying aortic aging. METHODS: Male SD rats were divided into blank group, model group, prevention group and treatment group, with 20 rats in each group. Subacute aging model was established by intraperitoneal injection of D-galactose(500 mg·kg-1·d-1). In the morning, rats in the prevention group received moxibustion at ST36 with 3 moxa cones after modeling operation, once every day for 42 d. From the day after the 42-day modeling, rats in the treatment group received the same moxibustion treatment as the prevent group for 28 d. Rats in the blank and model group were fixed in the similar way as the other two groups, for 5 min. Contents of serum SIRT1, p53, endothelial nitric oxide synthase(eNOS) and vascular endothelial growth factor(VEGF) were detected by ELISA. Histopathological changes of aortic tissue were observed after HE staining. Expressions of SIRT1 and p53 mRNAs and proteins in aortic tissue were detected by qPCR and Western blot. RESULTS: Compared with the blank group, the model group showed aging symptoms, the prevention group was similar to the blank group, and the treatment group was slightly better than the model group. Compared with the blank group, content of serum p53, expressions of p53 mRNA and protein in aortic tissues were significantly increased (P<0.05, P<0.01), while contents of serum SIRT1, VEGF, eNOS, and expressions of SIRT1 mRNA and protein in aortic tissues were significantly decreased (P<0.05, P<0.01) in the model group. Compared with the model group, content of serum p53, and expression of p53 mRNA and protein in aortic tissues were significantly decreased (P<0.05, P<0.01) in the prevention and treatment groups, while the contents of serum SIRT1, VEGF, eNOS, and the expressions of SIRT1 mRNA and protein in aortic tissues were significantly increased (P<0.05, P<0.01). Compared with the treatment group, rats in the prevention group displayed significant improvement of the above indexes (P<0.05). Compared with the blank group, the endothelial cells were disordered, the vessel wall was significantly thickened, and the senescent cells were increased in the model group; the blood vessel walls were thinner to varying degrees, and the senescent cells were reduced and unevenly distributed in the prevention and treatment groups. The histopathological lesion was improved more obviously in the prevention group than the treatment group. CONCLUSION: Moxibustion at ST36 can alleviate vascular endothelial injury and oxidative stress in subacute aging rats, which may be related to its effect in regulating the SIRT1/p53 signaling pathway.


Asunto(s)
Moxibustión , Sirtuina 1 , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Sirtuina 1/genética , Proteína p53 Supresora de Tumor/genética , Factor A de Crecimiento Endotelial Vascular/genética , Células Endoteliales , Envejecimiento/genética , ARN Mensajero , Transducción de Señal
8.
Clin Epigenetics ; 15(1): 84, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179367

RESUMEN

BACKGROUND: Higher exposure to traffic-related air pollution (TRAP) is related to lower fertility, with specific adverse effects on the ovary. Folic acid may attenuate these effects. Our goal was to explore the relation of TRAP exposure and supplemental folic acid intake with epigenetic aging and CpG-specific DNA methylation (DNAm) in granulosa cells (GC). Our study included 61 women undergoing ovarian stimulation at a fertility center (2005-2015). DNAm levels were profiled in GC using the Infinium MethylationEPIC BeadChip. TRAP was defined using a spatiotemporal model to estimate residence-based nitrogen dioxide (NO2) exposure. Supplemental folic acid intake was measured with a validated food frequency questionnaire. We used linear regression to evaluate whether NO2 or supplemental folic acid was associated with epigenetic age acceleration according to the Pan-tissue, mural GC, and GrimAge clocks or DNAm across the genome adjusting for potential confounders and accounting for multiple testing with a false discovery rate < 0.1. RESULTS: There were no associations between NO2 or supplemental folic acid intake and epigenetic age acceleration of GC. NO2 and supplemental folic acid were associated with 9 and 11 differentially methylated CpG sites. Among these CpGs, only cg07287107 exhibited a significant interaction (p-value = 0.037). In women with low supplemental folic acid, high NO2 exposure was associated with 1.7% higher DNAm. There was no association between NO2 and DNAm in women with high supplemental folic acid. The genes annotated to the top 250 NO2-associated CpGs were enriched for carbohydrate and protein metabolism, postsynaptic potential and dendrite development, and membrane components and exocytosis. The genes annotated to the top 250 supplemental folic acid-associated CpGs were enriched for estrous cycle, learning, cognition, synaptic organization and transmission, and size and composition of neuronal cell bodies. CONCLUSIONS: We found no associations between NO2, supplemental folic acid, and DNAm age acceleration of GC. However, there were 20 differentially methylated CpGs and multiple enriched GO terms associated with both exposures suggesting that differences in GC DNAm could be a plausible mechanism underlying the effects of TRAP and supplemental folic acid on ovarian function.


Asunto(s)
Contaminación del Aire , Metilación de ADN , Humanos , Femenino , Contaminación del Aire/efectos adversos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Envejecimiento/genética , Ácido Fólico/efectos adversos
9.
Aging (Albany NY) ; 15(8): 2906-2919, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37071017

RESUMEN

BACKGROUND: Aging is a major factor for cardiovascular disease, and cardiac aging is closely related to the incidence of cardiovascular disease. Clarifying the mechanism of cardiac aging and finding reliable intervention is critical for preventing cardiovascular diseases and achieving healthy longevity. Traditional Chinese medicine Yiqi Huoxue Yangyin (YHY) decoction has unique advantage in the treatment of cardiovascular disease and aging. However, the associated molecular mechanisms remain unknown. PURPOSE: The present study aimed to verify the efficacy of YHY decoction against cardiac aging in D-gal-induced mouse model, and explore the potential mechanism of YHY decoction treatment through whole-transcriptome sequencing technique, providing novel insights into the molecular basis of YHY decoction in treating cardiac aging. METHODS: The component of YHY decoction was identified by High Performance Liquid Chromatography (HPLC). D-gal-induced aging mouse model was established for this study. HE and Masson staining were applied to determine pathological changes of heart; telomere length, telomerase activity, AGEs and p53 were used to evaluate the degree of heart aging. Transcriptome sequencing, GO, KEGG, GSEA and ceRNA network were applied to analyze the potential mechanism of YHY decoction treatment of cardiac aging. RESULTS: In this study, we found that YHY decoction not only improved the pathological structure of aging heart, but also regulated the expression of aging-related markers, telomere length, telomerase activity, AGEs and p53, the myocardial tissue, suggesting that it has a specific effect in delaying cardiac aging. Whole-transcriptome sequencing showed that the total of 433 mRNAs, 284 lncRNAs, 62 miRNAs, and 39 circRNAs were significantly differentially expressed after YHY decoction treatment. According to the analysis results of KEGG and GSEA, the differentially expressed mRNAs were found significantly involved in immune system, cytokine-cytokine receptor interaction and cell adhesion molecules. The ceRNA network showed that miR-770, miR-324, and miR-365 are localized in center, mainly affecting the immune system, PI3K-Akt signaling pathway, and MAPK signaling pathway. CONCLUSION: In conclusion, our results evaluated the ceRNA network of YHY decoction in treating cardiac aging for the first time, which could provide better understanding of the potential mechanism of YHY decoction treatment of cardiac aging.


Asunto(s)
Enfermedades Cardiovasculares , Telomerasa , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Transcriptoma , Proteína p53 Supresora de Tumor , Envejecimiento/genética , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada
10.
Nutrients ; 15(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986083

RESUMEN

Telomere length, as a biomarker of accelerated aging, is closely related to many chronic diseases. We aimed to explore the association between coffee consumption and telomere length. Our study included 468,924 participants from the UK Biobank. Multivariate linear models (observational analyses) were conducted to evaluate the associations of coffee intake, instant coffee intake, and filtered coffee intake with telomere length. In addition, we evaluated the causality of these associations in Mendelian randomization (MR) analyses by four methods (inverse-variance weighted (IVW), MR pleiotropy residual sum and outlier (MR-PRESSO), MR-Egger, and weighted median). Observational analyses indicated that coffee intake and instant coffee intake were negatively correlated with telomere length, which was equal to 0.12 year of age-related decrease in telomere length for each additional cup of coffee intake (p < 0.001), and 0.38 year of age-related decrease in telomere length for each additional cup of instant coffee intake (p < 0.001), respectively. There was no significant correlation between filtered coffee and telomere length (p = 0.862). Mendelian randomization analyses supported the results of observational analyses. Coffee intake was found to have a causal effect on telomere length through weighted median analysis (p = 0.022), and instant coffee intake had a causal effect on telomere length through IVW analysis (p = 0.019) and MR-PRESSO analysis (p = 0.028). No causal relationship was found between filtered coffee intake and telomere length (p > 0.05). Coffee intake, particularly instant coffee, was found to have an important role in shortening telomere length.


Asunto(s)
Envejecimiento , Café , Análisis de la Aleatorización Mendeliana , Telómero , Humanos , Envejecimiento/genética , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Telómero/genética , Reino Unido , Café/efectos adversos
11.
PLoS Biol ; 21(3): e3002033, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928253

RESUMEN

Aging is a systemic process, which is a risk factor for impaired physiological functions, and finally death. The molecular mechanisms driving aging process and the associated cognitive decline are not fully understood. The hypothalamus acts as the arbiter that orchestrates systemic aging through neuroinflammatory signaling. Our recent findings revealed that Menin plays important roles in neuroinflammation and brain development. Here, we found that the hypothalamic Menin signaling diminished in aged mice, which correlates with systemic aging and cognitive deficits. Restoring Menin expression in ventromedial nucleus of hypothalamus (VMH) of aged mice extended lifespan, improved learning and memory, and ameliorated aging biomarkers, while inhibiting Menin in VMH of middle-aged mice induced premature aging and accelerated cognitive decline. We further found that Menin epigenetically regulates neuroinflammatory and metabolic pathways, including D-serine metabolism. Aging-associated Menin reduction led to impaired D-serine release by VMH-hippocampus neural circuit, while D-serine supplement rescued cognitive decline in aged mice. Collectively, VMH Menin serves as a key regulator of systemic aging and aging-related cognitive decline.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Hipotálamo , Animales , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Hipotálamo/metabolismo , Serina/metabolismo , Factores de Transcripción/metabolismo
12.
Nutrients ; 15(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36839265

RESUMEN

Naringin (Nar) is a dihydroflavonoid compound, widely found in citrus fruit and used in Chinese herbal medicine. As a phytochemical, it acts as a dietary supplement that can delay aging and prevent aging-related disease, such as obesity and diabetes. However, its exact mechanism remains unclear. In this study, the high-glucose-induced (HGI) Caenorhabditis elegans model was used to evaluate the anti-aging and anti-obesity effects of Nar. The mean lifespan and fast movement span of HGI worms were extended roughly 24% and 11%, respectively, by Nar treatment. Oil red O staining revealed a significant reduction in fat accumulation and dFP::LGG-labeled worms showed the promotion of autophagy. Additionally, whole transcriptome sequencing and gene set variation analysis suggested that Nar upregulated the lipid biosynthesis and metabolism pathways, as well as the TGF-ß, Wnt and longevity signaling pathways. Protein-protein interaction (PPI) network analysis identified hub genes in these pathways for further analysis. Mutant worms and RNA interference were used to study mechanisms; the suppression of hlh-30, lgg-1, unc-51, pha-4, skn-1 and yap-1 disabled the fat-lowering, lifespan-prolonging, and health-promoting properties of Nar. Collectively, our findings indicate that Nar plays an important role in alleviating HGI-aging and anti-obesity effects by reducing fat accumulation and promoting autophagy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Glucosa/metabolismo , Envejecimiento/genética , Longevidad , Autofagia/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Señalizadoras YAP
13.
Biomed Pharmacother ; 160: 114384, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764132

RESUMEN

Bazi Bushen (BZBS), a traditional Chinese medicine, has been proven effective in the treatment of age-related disease in mouse models. However, whether its therapeutic effects are due to antiaging mechanism has not yet been explored. In the present study, we investigated the antiaging effects of BZBS in naturally aging mice by using behavioral tests, liver DNA methylome sequencing, methylation age estimation, and frailty index assessment. The methylome analysis revealed a decrease of mCpG levels in the aged mouse liver. BZBS treatment tended to restore age-associated methylation decline and prune the methylation pattern toward that of young mice. More importantly, BZBS significantly rejuvenated methylation age of the aged mice, which was computed by an upgraded DNA methylation clock. These results were consistent with enhanced memory and muscular endurance, as well as decreased frailty score and liver pathological changes. KEGG analysis together with aging-related database screening identified methylation-targeted pathways upon BZBS treatment, including oxidative stress, DNA repair, MAPK signaling, and inflammation. Upregulation of key effectors and their downstream effects on elevating Sod2 expression and diminishing DNA damage were further investigated. Finally, in vitro experiments with senescent HUVECs proved a direct effect of BZBS extracts on the regulation of methylation enzymes during cellular aging. In summary, our work has revealed for the first time the antiaging effects of BZBS by slowing the methylation aging. These results suggest that BZBS might have great potential to extend healthspan and also explored the mechanism of BZBS action in the treatment of age-related diseases.


Asunto(s)
Epigénesis Genética , Fragilidad , Animales , Ratones , Fragilidad/genética , Envejecimiento/genética , Metilación de ADN , Senescencia Celular
14.
Mech Ageing Dev ; 211: 111794, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841375

RESUMEN

Intervertebral disc degeneration (IDD) is triggered primarily by ageing, a process characterized by intrinsic, multifaceted and progressive characteristics. Regarding the crucial senescence genes and underlying regulatory mechanisms leading to the etiology of IDD, there is still some uncertainty. In this study, we used gene expression patterns from the GEO database to create a diagnostic model of IDD using differential ageing-related genes (DARG). We examine the relative dynamics of immune cells by single-sample gene set. On the basis of transcription factor (TF) miRNA and miRNA-mRNA pairs, the regulatory network for transcription and post-transcriptional processes was built. The active therapeutic components and Chinese herbal remedies of the main ageing genes were investigated using a network pharmacology approach. 20 DARGs were combined to create a diagnostic model, and both the training and validation sets had an area under the ROC curve of 1. We found alterations in many cell types in IDD tissue, but mainly in activated dendritic cells, type 17 T helper cells, and mast cells. We identified a regulatory axis for STAT1/miR-4306/PPARA based on the correlations between gene expression and targeting. Active substances (Naringenin and Quercetin) and herbs (Aurantii fructus and Eucommiae cortex) targeting PPARA for the treatment of IDD were discovered through network pharmacology. These results provide a theoretical framework for identifying and treating IDD. For the first time, we were able to diagnose IDD patients using 20 ageing-related indicators. At the same time, TF-miRNA-mRNA in conjunction with network pharmacology enabled the identification of prospective therapeutic targets and pharmacological processes.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , MicroARNs , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Envejecimiento/genética , ARN Mensajero/metabolismo , Disco Intervertebral/metabolismo
15.
Cell Rep ; 42(1): 111982, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640301

RESUMEN

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.


Asunto(s)
Relojes Circadianos , Transcriptoma , Masculino , Animales , Ratones , Transcriptoma/genética , Ritmo Circadiano/genética , Relojes Circadianos/genética , Hipotálamo , Envejecimiento/genética , Envejecimiento/metabolismo
16.
J Nutr Biochem ; 112: 109202, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36347449

RESUMEN

The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple age-related diseases are associated with telomere length. Telomerase is intimately related to inflammation and oxidative stress, but whether the underlying function of n-3 PUFAs on telomere maintenance is based on telomerase activation or related mechanisms remains unclear. Herein, we utilized late-generation (G4) telomerase-deficient (Terc-/-) mice to perform a lifelong docosahexaenoic acid (DHA) intervention to determine the potential of DHA in telomere maintenance and health promotion. Unfortunately, DHA failed to prolong mouse longevity in either intrinsic or premature aging. However, intriguingly, lifelong dietary DHA intervention slowed the aging phenotypes and profoundly attenuated telomere attrition in blood leukocytes and multiple tissues, consistent with decreased ß-galactosidase activity and other senescence hallmarks with no observed sex differences. Notably, DHA intervention alleviated telomere attrition-induced γ-H2AX accumulation dependent on poly (ADP-ribose) polymerase 1 (PARP1) recruitment, and further regulated mitochondrial dysfunction critically involved in the DNA damage response. Together with the improvement of mitochondria function, the blocked reactive oxygen species (ROS) accumulation and suppression of the nuclear factor-κB (NF-κB)/nucleotide-binding domain-like receptor protein 3 (NLRP3)/caspase-1 pathways partially indicated anti-oxidative and anti-inflammatory effects of DHA. These data revealed a regulatory paradigm involving DHA in the telomere-DNA-mitochondria feedback loop mediated by DNA damage response and inflammation in alleviating senescence, which may hold potential as a translatable intervention in telomere-related diseases during aging.


Asunto(s)
Ácidos Grasos Omega-3 , Telomerasa , Femenino , Animales , Masculino , Ratones , Telomerasa/genética , Telomerasa/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Senescencia Celular , Envejecimiento/genética , Inflamación , ADN Mitocondrial , Mitocondrias/metabolismo , Telómero/metabolismo
17.
Bull Exp Biol Med ; 176(2): 232-234, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194067

RESUMEN

The expression of glutamate decarboxylase GAD65/67, an enzyme of GABA synthesis, and vesicular glutamate transporter 2 (VGLUT2) in the arcuate, dorsomedial, and ventromedial nuclei of the hypothalamus of young (3 months), adult (12 months), and old male rats (24 months) was studied by Western blotting. In old rats, an increase in the expression of GAD65/67 in the arcuate and dorsomedial, VGLUT2 in the arcuate, dorsomedial, and ventromedial nuclei was observed. Thus, an increase in opposite processes of inhibition and excitation is observed in the hypothalamic nuclei during aging.


Asunto(s)
Hipotálamo , Neuronas , Animales , Masculino , Ratas , Envejecimiento/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo
18.
Adv Gerontol ; 36(5): 714-719, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38180371

RESUMEN

The hypothalamus is a regulatory center that controls homeostasis, reproduction, circadian rhythms, and the endocrine system. It is also involved in the regulation of aging. Expression of protein kinase B (AKT), the mammalian target of rapamycin (mTOR), and phosphorylated forms of AKT (pAKT) and mTOR (pmTOR) was studied by Western blotting in 3-, 12-, and 24-month-old male rats in the arcuate (ARN), dorsomedial (DMN) and ventromedial (VMN) nuclei of the hypothalamus. The results showed that the components of AKT/mTOR signaling change differently in the mediobasal hypothalamic nuclei of rats with age. The expression of AKT and pAKT decreased in the ARN, DMN, and VMN with aging; the expression of mTOR and pmTOR increased in the ARN, but decreased in the DMN and VMN in aged rats. The results obtained can serve as a basis for future studies of the mechanisms of age-related diseases and their pharmacological treatment.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Animales , Masculino , Ratas , Envejecimiento/genética , Hipotálamo , Neuronas , Sirolimus
19.
Hum Genomics ; 16(1): 54, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348440

RESUMEN

Age-related diseases account for almost half of all diseases among adults worldwide, and their incidence is substantially affected by the exposome, which is the sum of all exogenous and endogenous environmental exposures and the human body's response to these exposures throughout the entire lifespan. Herein, we perform a comprehensive review of the epidemiological literature to determine the key elements of the exposome that affect the development of age-related diseases and the roles of aging hallmarks in this process. We find that most exposure assessments in previous aging studies have used a reductionist approach, whereby the effect of only a single environmental factor or a specific class of environmental factors on the development of age-related diseases has been examined. As such, there is a lack of a holistic and unbiased understanding of the effect of multiple environmental factors on the development of age-related diseases. To address this, we propose several research strategies based on an exposomic framework that could advance our understanding-in particular, from a mechanistic perspective-of how environmental factors affect the development of age-related diseases. We discuss the statistical methods and other methods that have been used in exposome-wide association studies, with a particular focus on multiomics technologies. We also address future challenges and opportunities in the realm of multidisciplinary approaches and genome-exposome epidemiology. Furthermore, we provide perspectives on precise public health services for vulnerable populations, public communications, the integration of risk exposure information, and the bench-to-bedside translation of research on age-related diseases.


Asunto(s)
Exposoma , Estados Unidos , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Envejecimiento/genética
20.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233147

RESUMEN

Sarcopenia (Sp) is the loss of skeletal muscle mass associated with aging that results in an involution of muscle function and strength. Vitamin D deficiency is a common health problem worldwide, especially among the elderly, and hypovitaminosis D leads to musculoskeletal disorders. The aim of this study was to evaluate the impact and presence of a possible linkage between Single Nucleotide Polymorphisms (SNPs) CYP2R1 (rs10741657), GC (rs2282679), and VDR (rs2228570), serum 25-OH/D concentrations and the link with the degree of sarcopenia in 19 institutionalized elderly men not supplemented with vitamin D. Levels of 25-OH vitamin D were quantified with a commercial enzyme-linked immunosorbent assay kit and 3 SNPs were genotyped with KASPar assays. Significant differences in 25-OH/D concentration were determined between the bi-allelic combinations of rs228679 and rs228570. We detected statistically significant weak positive correlations between the AA (rs10741657 and rs228570) and TT (rs228679) and alleles and 25-OH/D and the probability of having higher 25-OH/D concentrations was 2- to 3-fold higher. However, the GG alleles of the 3 SNPs showed that the probability of having optimal 25-0H/D concentrations decreases by 32% for rs10741657, 38% for rs228679, and 74% for rs228570, showing a strong negative correlation between the degree of sarcopenia and 25-OH/D levels. Allelic variations in CYP2R1 (rs10741657), GC (rs2282679), and VDR (rs10741657) affect vitamin D levels and decisively influence the degree of sarcopenia in institutionalized elderly people.


Asunto(s)
Colestanotriol 26-Monooxigenasa , Familia 2 del Citocromo P450 , Receptores de Calcitriol , Sarcopenia , Deficiencia de Vitamina D , Proteína de Unión a Vitamina D , Anciano , Envejecimiento/genética , Calcifediol , Colestanotriol 26-Monooxigenasa/genética , Familia 2 del Citocromo P450/genética , Genotipo , Humanos , Masculino , Músculo Esquelético , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol/genética , Sarcopenia/genética , Vitamina D/análogos & derivados , Deficiencia de Vitamina D/genética , Proteína de Unión a Vitamina D/genética , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA